
What About Toom-Cook Matrices Optimality ?

Marco Bodrato and Alberto Zanoni

Centro “Vito Volterra” – Università di Roma Tor Vergata
Via Columbia 2 – 00133 Rome, Italy

{bodrato, zanoni}@volterra.uniroma2.it
??

October 19, 2006

Abstract. Karatsuba and Toom-Cook are well-known methods used to multiply efficiently two long
integers. There have been different proposal about the interpolating values used to determine the matrix
to be inverted and the sequence of operations to invert it. A definitive word about which is the optimal
matrix (values) and the (number of) basic operations to invert it seems still not to have been said. In this
paper we present some particular examples of useful matrices and a method to generate automatically,
by means of optimised exhaustive searches on a graph, the best sequence of basic operations to invert
them.

AMS Subject Classification: 11A05, 11A25, 11K65, 11Y70

Keywords and phrases: Polynomial multiplication, Karatsuba, Toom-Cook, interpolation

1 Introduction

Starting with the works of Karatsuba [4], Toom [6] and Cook [2], who found methods to lower asymptotic
complexity for polynomial multiplication from O(n2) to O(n1+ε) with 0 < ε 6 log2 3, many efforts have been
done in finding optimised implementations in arithmetic software packages [5], [8], [3].

The family of so-called Toom-Cook methods is an infinite set of algorithms (called Toom-3, Toom-4, etc.
- Karatsuba may be identified with Toom-2). Each of them may be viewed as a polynomial interpolation
problem, for which the base points are not specified a priori, from which a matrix to be inverted rise. We
indicate the matrix related to Toom-n method with An ∈ GL(Z, 2n− 1).

Moreover, a set O of basic operations (typically sums, subtractions, bit shiftings, multiplication and
division by small numbers, etc.) is given. Practically, this is a set of very efficiently implemented basic
functions in a certain computer language, and the idea is to use them to invert An step by step.

A particular implementation of Toom-n method must then specify

1. The interpolation points vi (Toom-n requires 2n− 1 values), which determine the matrix An.
2. The sequence of operations in O needed to invert the matrix (we indicate it with inversion sequence, or

IS, for short, when we want to emphasise the dimension, we will use ISn).

In the scientific literature there is still not a definitive word on which is the best matrix to be used and
which is the corresponding sequence of basic operations to invert it. For Karatsuba method, a exhaustive
search on a “reasonable” set of interpolation points is very easy, while already for Toom-3 things are less
clear. For example, only recently the GMP library (from version 4.2) changed implementation for Toom-3,
choosing a different IS3, more efficient than the one in the precedent release.

It is not trivial at all to prove the optimality of a matrix An with respect to the related Toom-n method,
because in principle there are infinite possibilities for the vi values, and a combinatorial number of inversion
sequences, and different optimality criteria. Some heuristics for vi choice are present in Zuras’ paper [9], but,
to the best of our knowledge, the final word has still not been said.

In this paper we introduce some optimality criteria to measure goodness of inversion sequences, and
present an algorithm to automatically search for an optimal IS starting from a given matrix An. We considered
a theoretical model following an approach based on:

– Minimal use of extra memory (no temporary variables)
– Only exact integer divisions
– No matrix support grow (a zero entry remains always zero)
– No multiplication of a line times an integer

?? A copy of this paper can be downloaded from http://bodrato.it/papers/

http://bodrato.it/papers/

2 A short review on Toom-n methods

Toom-n is a class of recursive methods to multiply two polynomials of degree m with complexity lower
than O(m2). In particular, a very standard analysis tells that Toom-n method has asymptotic complexity
O(mlogn(2n−1)), so that in principle it would be possible to approach linear complexity for n→∞.

In practise, only the methods with very small values of n (as 2, 3, 4) are used, because of the asymptot-
ically better O(n log n log log n)–complexity Schönhage-Strassen method [7]. The thresholds indicating the
convenience of one method in comparison with another one depend very much on the implementation, but
also on the choice of An and of the performed ISn.

All these methods can be used to multiply also integers, just fixing a number 1 < B ∈ N (the base) and
considering integers expansion in base B, so that to each integer u we can univocally associate a polynomial
uB(x):

Z 3 u =
logB i∑
k=0

ukB
k =⇒ uB(x) =

logB i∑
k=0

ukx
k ∈ Z[x]

Integer multiplication reduces to polynomial multiplication, followed by an evaluation:

u · v = z =⇒ uB(x) · vB(x) = zB(x) =⇒ z = zB(x)|x=B

2.1 The classical point of view

As indicated above, usually one makes the assumption that the two factors have the same degree. If it is
not the case, padding the lower-degree polynomial with zero coefficients is supposed. To compute c(x) =
a(x) · b(x) ∈ K[x] such that

a(x) =
d∑
i=0

aix
i ; b(x) =

d∑
i=0

bix
i

we set up an interpolation problem. Of course, for every v ∈ K, c(v) = a(v) · b(v). Provided K is not too
small, we may choose 2d+ 1 different values vi ∈ K, and compute the sequences a = (a(v0), . . . , a(v2d)) and
b = (b(v0), . . . , b(v2d)), that let us to compute the product sequence

w = (w(v0), . . . , w(v2d)) = (a(v0) · b(v0), . . . , a(v2d) · b(v2d))

Recovering the set of coefficients c = (c0, . . . , c2d) is now just a classical interpolation problem solving

Anc = w =⇒


v2d
0 · · · v0 1
v2d
1 · · · v1 1
...

...
v2d
2d · · · v2d 1



c0
c2
...
c2d

 =


w0

w2

...
w2d

 =⇒ c = A−1
n w

For integer multiplication, suppose the factors have l digits if considered in a certain base B. Now consider
them in the new base B′ = Bl/n: what practically happens is to consider n parts of l/n B-digits each. The
ith part is nothing but the coefficient ai (bi).

Now perform the above indicated computations: the whole process requires 2d+1 = 2n−1 multiplications
of numbers with n times less digits1, with the additional overhead of a(vi), b(vi) values computation and the
inversion of the resulting matrix An. Note that only matrices with odd order are obtained this way.

2.2 A temporary useful point of view

In this paper, for performance testing, we will also consider “intermediate” versions of Toom-Cook methods,
which consider a(x), b(x) with different degrees d1, d2, without zero padding. Indicating with n1 = d1+1, n2 =
d2 + 1 the number of necessary subdivisions, the principle remains basicly the same, but now the obtained
matrices – indicated with An1,n2 – can have also even order.

Examples : (without loss of generality we suppose n1 > n2)

1 Recursive application of the method to a(vi) · b(vi) products results in the asymptotic complexity estimate
O(mlogn(2n−1)).

2

n2 = 1 Here b(x) = b0, and it is more convenient to compute directly the product
coefficients ci = ai · b0.

(n1, n2) = (3, 2) Here c(x) has degree 3, and A3,2 has order 4. In section 7 we will refer to
this method as Toom-2.5

(n1, n2) = (4, 3) Here c(x) has degree 5, and A4,3 has order 6. In section 7 we will refer to
this method as Toom-3.5

(n1, n2) = (4, 2) In this case A4,2 has order 5, and A3 may well be chosen as an optimal
choice A4,2

n1 − n2

d1 − d2

}
≡ 0 (2)

Generalisation of the precedent cases: a “fall back” to the classical Toom-
(d1 + d2 − 1) method: An1+n2−3 may well be chosen as an optimal choice
for An1,n2

While the (3,2) and (4,3) models have most a theoretical value, the (4,2) case suits very well in practical
cases. Infact, a program/library implementing both Toom-3 and Toom-4 methods should use Toom-3 when
one factor has 4 parts and the other one just 2.

3 The matrices An

Even if Toom-n works for whatever choice of the vi, it is better to choose them in order to minimize the matrix
invertion overhead as much as possible. The inverse is usually computed by a sequence of elementary row
operations à la Gauss, and therefore we should search the “shortest” (least number of elementary operations)
and easiest (fastest elementary operations) way to compute A−1

n .
It is possible to consider rational vi values even when working only with integers. Infact, if vi = Ni/Di,

we have

a(vi) · b(vi) = c(vi) =⇒

(
d∑
k=0

ak

(
Ni
Di

)k)
·

(
d∑
k=0

bk

(
Ni
Di

)k)
=

2d∑
k=0

ck

(
Ni
Di

)k
and multiplying by D2d

i we may get rid of the denominators, so that:(
d∑
k=0

akN
k
i D

2d−k
i

)
·

(
d∑
k=0

bkN
k
i D

2d−k
i

)
=

2d∑
k=0

ckN
k
i D

2d−k
i

which means that the ith line of An will be (N2d
i , N2d−1

i Di, . . . , NiD
2d−1
i , D2d

i). In particular,

– integer values vi = Ni generate lines (N2d
i , N2d−1

i , . . . , Ni, 1)

– integer reciprocals vi = 1/Di generate (1, Di, . . . , D
2d−1
i , D2d

i)

We use ∞ as interpolation “value” to indicate ad · bd product computation, which in a certain sense
represents interpolation on the reciprocal of zero, or, more precisely,

a(∞) = lim
x→∞

a(x)
xd

= ad ; b(∞) = lim
x→∞

b(x)
xd

= bd

Following the literature and for obvious efficiency, we will always consider the interpolating values v0 = 0
and v2d =∞, so that An will have the shape

An =


1 0 · · · 0 0
X X · · · X X
...

...
...

X X · · · X X
0 0 · · · 0 1

 with X indicating not zero entries (1)

and c0 = w0, c2d = w2d. Our inversion analysis will then focus mainly on the inner lines.
The well-known result about Vandermonde determinants applied to Toom matrices gives the following:

3

Proposition 1. For a Vandermonde matrix An generated by the r = 2n − 1 values
{
∞, N2

D2
, . . . , Nr−1

Dr−1
, 0
}

(Toom matrix) we have

det(An) =

(
r−1∏
i=2

NiDi

)
·
∏

1<i<j<r

(NiDj −NjDi)

Proof. Starting from the classical Vandermonde formula, and remembering that in order to have integer
entries we cleared the denominators in every line of An multiplying it by Dr−1

i , we have

det(An) =

(
r∏
i=1

Dr−1
i

)
·
∏
i<j

(
Ni
Di
− Nj
Dj

)
=

(
r∏
i=1

Dr−1
i

)
·
∏
i<j

(
NiDj −NjDi

DiDj

)
=

=

(
r∏
i=1

Dr−1
i

)
·
∏
i<j(NiDj −NjDi)∏

i<j DiDj

In the denominator
∏
i<j DiDj every term Dk appears r− k times in the first place (k = i, j = k+ 1, . . . , r)

and k − 1 times in the second (j = k, i = 1, . . . , k − 1), so that the result is
∏r
i=1D

r−1
i . Canceling out, we

obtain

=

(
r∏
i=1

Dr−1
i

)
·
∏
i<j(NiDj −NjDi)∏r

i=1D
r−1
i

=
∏

16i<j6r

(NiDj −NjDi)

The value 0 corresponds to the choice Nr = 0, Dr = 1, while ∞ to N1 = 1, D1 = 0 (it is easy to prove that
the above formula is also valid in this latter case). Considering these two cases (i = 1, j = r) apart, we have

=

(
Dr

r−1∏
j=2

Dj

)(∏
1<i<j<r

(NiDj −NjDi)
)(

N1

r−1∏
i=2

Ni

)

which gives the desired result.

Lemma 1. Let α = ±2a 6= β = ±2b, with a, b ∈ Z. The number γ = α − β is a power of 2 only if α = −β
or α = 2β or α = β/2.

Proof. There are two cases:

1. αβ > 0 : we have ±γ = 2a − 2b = 2b(2a−b − 1), and 2a−b − 1 is a power of 2 iff |a − b| 6 1. Excluding
the case a = b, corresponding to α = β, only the cases α = 2β, α = β/2 remain.

2. αβ < 0 : we have ±γ = 2a + 2b = 2b(2a−b + 1), and 2a−b + 1 is a power of 2 iff a = b, that is α = −β

Proposition 2. For each Toom matrix An with n > 3, its determinant is not a power of 2.

Proof. By contradiction, we should have that det(An) =
(∏r−1

i=2 NiDi

)∏
1<i<j<r(NiDj −NjDi) should be

a power of 2, according to proposition 1. Looking at the first factor, this means that all the Ni, Di should
be powers of 2, say Ni = ±2ei , Di = 2fi and the same for all the factors (NiDj − NjDi). Supposing that
(Ni, Di) = 1 (ei · fi = 0), we have

(NiDj −NjDi) = DiDj
(NiDj −NjDi)

DiDj
= DiDj

(
Ni
Di
− Nj
Dj

)
= ±2f (xi − xj)

We can fix x1 = 2a, any power of 2. Then, by lemma 1, we should choose the other xi in the set
{−2a, 2a+1, 2a−1}, but for any two of them we will never have xi − xj being a power of two.

4 Optimality criteria

In the following, for a square matrix M we indicate with M [i, j] its entry in position (i, j) and with M (i) its
ith line. We begin with some definitions:

Definition 1. The support of M (i) is the set s(M (i)) of column indexes j ∈ N such that M [i, j] 6= 0. The
support of M is the set s(M) of pairs (i, j) ∈ N×N such that M [i, j] 6= 0. The cardinality of a line support
s(M (i)) is indicated with #M (i), and of the matrix support s(M) with #M .

4

Definition 2. We note with gcdi(M) = gcd(M (i)) the greatest common divisor of all coefficients in M (i).

Inversion sequences are sequences of basic operations changing the initial matrix and producing as last
matrix the identity matrix. Gauss’ method is e.g. a classical algorithm to produce effective IS, reducing at
each step the maximum possible cardinality of still-to-be-analysed lines support. However, it uses as basic
operations, apart from sums and subtractions, multiplications and division at each step, and from a computer
point of view this is not quite optimal when looking for efficiency.

Gauss’ method merit is that it is very efficient for general matrices, but in our case, where matrices have
a very particular form, it may be possible to find different SI which are, in terms of nature and number of
used basic operations, more efficient.

We propose here some optimality criteria, that guarantee termination of our exhausting algorithm. For
An matrices as specified in equation (1), we have

#An = 1 + (2n− 1− 2)(2n− 1) + 1 = ((2n− 1)2 − 2(2n− 1) + 1) + 1 = (2n− 1− 1)2 + 1 = 4(n− 1)2 + 1

We now list the used criteria: we suppose that the basic row operations involve lines M (i1),M (i2), and
that M (i1) is overwritten with the result. We indicate with M̃ the matrix after the execution of the operation.

A) Support reduction criterion : #M̃ (i) < #M (i). The resulting line must have at least one more co-
efficient with value 0.

B) Alignment criterion : M̃ [i1, j1]/M [i2, j1] = M̃ [i1, j2]/M [i2, j2]. The resulting line must have more
entries differing from the corresponding ones in another line by an equal multiplicative factor.

Criterion (A) is sufficient to guarantee termination of the exhaustive research algorithm that we’ll de-
scribe in the following section. The solution actually implemented by GMP applies once criterion (B).

Gauss’ method uses a support lexicographic ordering. Supposing no row and column permutation is
necessary, at step k we have that n2 = k for all following lines whose kth entry is not 0. Their support
is reduced (coefficient is zet to 0) starting from the leftmost entry. Note that Gauss’ method can lead to
intermediate step in which the matrix is more dense than the precedent one, while we do not permit this.

5 The Toom graph

We note the identity matrix of order s with Is; if the order is not relevant, simply with I.
Let an appropriate set of interpolation values {vi} be given, that is, let An be known from the beginning.

We perform an exhaustive search on all the possible IS, according to the criteria introduced in section 4.
This can be modeled by a oriented and weighted graph (N,E) (which we call Toom graph), in which each
node ν ∈ N is represented by the matrix Mν . We call α the distinguished “initial” node, such that Mα = An,
and similarly ω the corresponding “final” node for I. Edges are described below.

In order to have a sufficiently easy theoretical modelisation of the graph procedure analysis, we will
consider as basic operations the following ones (i, i1, i2 are row indexes and c, c1, c2 ∈ Z):

1. M (i1)
ν′ = M̃

(i1)
ν = c1M

(i1)
ν + c2M

(i2)
ν

2. M (i)
ν′ = M̃ (i)

ν =
M

(i1)
ν

c
=
(
Mν [i, 1]

c
,
Mν [i, 2]

c
, · · · , Mν [i, 2n− 1]

c

)
where each of the divisions by c is exact. The edges ε = (ν1, ν2) ∈ E are identified by the quadruple
(i1, i2, c1, c2) or by the pair (i, c), respectively. With this in mind, IS can simply be considered as edges
sequences, or, in graph terminology, as paths joining α to ω.

To consider the different computational cost of row elementary operations depending on c, c1, c2 values
in graph analysis, we introduce some constant weights, named in table 1 (possibly swapping |c1| and |c2|
values). COMBINATION WEIGHT is practically the basic cost of an addition/subtraction of two long integers.
An appropriated tuning of these constants will result in choosing a particular criterion of graph visit.

Definition 3. The weight w(ε) of an edge ε ∈ E is the constant defined by table 1 according to the values
of c1, c2 (or simply c, in case 2). The weight wIS of a IS = (ε1, . . . , εl), where εi = (νi, νi+1) and Mνl+1= I,
is wIS = w(ε1) + · · ·+w(εl). An IS is minimal if its weight is minimal among the weights of all possible IS
connecting ν1 to νl+1. The weight w(M) of a matrix M is wIS of a minimal IS for M . The weight w(ν) of
a node ν is defined as w(ν) = w(Mν).

5

1.

|c1| |c2| Operation Weight

1 1 + or − COMBINATION WEIGHT

= 2k > 1 1 ±, shifting ’’ + 1 2 WEIGHT

> 1, 6= 2k 1 ±, multiplication ’’ + 1 X WEIGHT

= 2k > 1 > 1, 6= 2k ±, shifting and multiplication ’’ + 2 X WEIGHT

> 1 > 1 general linear combination ’’ + X Y WEIGHT

2.

|c| Operation Weight

1 (may be unitary −) ∼ 0

= 2k > 1 shifting SHIFT WEIGHT

> 1, 6= 2k / DIVISION WEIGHT

Table 1. Weight constants for elementary row operations

Obviously, w(I) = 0.

Example (Karatsuba graph): Let (v0 =∞, v1 = 1, v2 = 0) identify Karatsuba matrix A2. We have

A2
ε1−−−−→ M1

ε2

y yε3
M2

ε4−−−−→ I2

with A2 =

1 0 0
1 1 1
0 0 1

 , M1 =

1 0 0
0 1 1
0 0 1

 , M2 =

1 0 0
1 1 0
0 0 1


Example (Knuth graph): Let (v0 =∞, v1 = −1, v2 = 0) identify the Knuth matrix A′2. We have

A′2
ε1−−−−→ M ′1

ε2

y yε3
M ′2

ε4−−−−→ I2

with A′2 =

1 0 0
1 −1 1
0 0 1

 , M ′1 =

1 0 0
0 1 −1
0 0 1

 , M ′2 =

1 0 0
1 −1 0
0 0 1


These almost trivial graphs show that in the Toom graph generated by a fixed matrix An there are

many minimal IS, and, that different matrices may have equivalent minimal IS. We call An-graph the graph
generated by a matrix An. In the following, we consider Toom graphs generated by An (or An1,n2) matrices.

6 Travelling through Toom graphs

What we’re really trying to do is practically to solve a minimum weight path problem between α and ω.
Toom graphs are very big. Beginning with Toom-3, it is easy to work with dozens of thousands nodes,

and, in order to cope both with memory limitation and time reduction, we developed some strategies not
to consider/add some nodes to the graphs. Note that a node ν (and therefore all of its neighbors) might
be visited many times, since in general there are many different sequences (“paths”) of elementary row
operations joining ν with another node ν′.

In general, two opposite approaches are possible to automatically visit the graph by means of a computer
program: the purely functional one, which does not need the graph to be really constructed, and a second
one for which the graph is actually built.

– It is clear that a recursing function f visiting a graph G would have no computer memory occupation
problems (Gauss’ method gives immediately a reasonable upper bound l for IS lenghts), but this approach
would be extremely lengthy in time. Infact, in this case G would be implicitly represented by the stack of
f nested callings, with length 6 K× l for a certain fixed factor K, and the amount of needed memory can
be precisely estimated from the very beginning (avoiding a computational “explosion” because of space
lacking). But there is a “time” disadvantage. When an istance of f ends its work finishing analysing a
node ν, all the information about the subgraph G′ having ν as initial node is lost. If ν appears again,
reached by another path, G′ must be completely analysed again.

– On the other hand, f could effectively memorize the nodes of a graph while analysing it, in order to
recognise if a node has already been inserted, avoiding thus to loose time. Unfortunately, as said, these
graphs are huge, and without a tuned analysis management they grow so much as to rapidly fill all the
available memory.

6

We try to stay someway in the middle, keeping only some nodes for some time, so as to avoid until possible
– possibly before filling up all the available memory – to repeat analysing nodes, but we also apply the below
explained considerations in order to skip “trivial” graph analysis, when the path(s) from the current node
to the identity node are trivial or can be sufficiently easily estimated.

6.1 A guided tour of the graph

Let f(α) be, as indicated before, the program visiting the graph having α as its initial node. Keeping
in mind that we want to obtain IS with lowest possible weight, we introduce a second argument for f ,
the DESIRED WEIGHT (DW). Its meaning is related to the fact that we’re interested only in IS with
wIS 6 DW , marking as “not interesting” the nodes ν with w(Mν) > DW .2

We implement this marking not as a boolean variable updating, but as two weights (to be compared) we
associate to every node ν. These weights are a lower and upper bound of w(ν), respectively, and are indicated
with mw(ν) andMw(ν) (for min and max). The function f returns as result the pair (mw(ν),Mw(ν)). The
underlying idea is that making use of DW , it is not always really necessary to know precisely the exact
weight of a node to classify a matrix as interesting or not.

In the analysis made by f(ν, t) – where t is the desired weight – for a node ν the following may happen:

mw(ν) =Mw(ν) : this means that ν has already been completely analysed, and that w(ν) = mw(ν) =
Mw(ν). Then f immediately returns the pair (mw(ν),Mw(ν)), with no further computations.

t < mw(ν) : then f does not need to recurse over and over again, because, so to say, a sufficient number of
operations to invert Mν is not permitted. Then f immediately returns the pair (mw(ν),Mw(ν)). Note
that this may happen even if w(Mν) has still not been determined exactly, in particular even if ν has
never been found before in the graph.

In the above cases, no further analysis is carried beyond ν, and this make the graph analysis faster.
Suppose now f(ν, t) is executing, and let ν′ be a neighbor of ν, joined to ν by the edge ε, and t′ = t−w(ε).
The recursive call on ν′ will be f(ν′, t′), and we call w = (mw(ν′),Mw(ν′)) the returned value.

At this point, the “parent” istance of f receiving w must try the other neighbors of ν, but before doing
this, t is updated: t = min{t,mw(ν′)+w(ε)}. This is a very important step, because if f succeeded in inverting
Mν′ with a IS having weight mw(ν′) = Mw(ν′) < t′, the new value t for DW will be strictly smaller than
the precedent one, and all the paths that will be analyzed from now will have a stronger restriction, so that
pruning is likely to become more and more effective.

6.2 Heuristics for weight estimates

It is clear that the better estimate one is able to give for a matrix weight w(M), the shorter and more
efficient the graph analysis will be, both in space and time requirements. we present here some of the ideas
we implemented in order to give a as best as possible estimate.

A first trivial estimate for mw(ν) and Mw(ν) can be obtained from the support of Mν and of the single
lines and columns, considering that #Im = m.

Definition 4. A matrix row M (i) is a singleton line if all its entries but one are zero, and the not zero
entry has value v = 1 or v = −1. It is almost singleton if |v| 6= 1. Similarly for columns. A singleton line
is indicated with SLj, an almost singleton line with ASLj, where j is the position of v.

Proposition 3. Let Mν ∈ GL(m,Z) with #Mν = s, nsl the number of its non-singleton lines, and nsc the
number of its non-singleton columns. Then mw(ν) > max{nsl, nsc} × COMBINATION WEIGHT and
Mw(ν) 6 (s−m)× (COMBINATION WEIGHT + X Y WEIGHT) + nsl × DIVISION WEIGHT

Proof. The common idea is that every non-singleton line must be made singleton. For mw it is sufficient to
consider the best possible case (just one operation for each line to update), while forMw consider the worst
possible case, in which each operation of type 1 produces just one more zero, so there are s −m of them,
followed by a final division for each non-singleton line, to make it monic.

2 In a certain sense, DW works as a threshold, useful to prune Toom graphs analysis.

7

Obviously, the more accurate the estimates are, the less nodes are considered/build in the graph, because
the function f has more probabilities to obtain sufficient information from the estimates. Weight estimation
can be performed line by line, just summing up the corresponding values. There is an interesting particular
case:

Proposition 4. Let Mν ∈ GL(m,Z), and M
(i)
ν = (a, 0, . . . 0, b, 0, . . . , 0, c), with b in jth position, different

from the first and the last one. Then this line-weight estimate can be computed exactly.

Proof. The entries a and c can be set to zero only using respectively the first and last line (both singleton).
The minimal (partial) IS depends on a, b and c values. A default strategy could then be:

– Set a to zero using the first line.
– Set c to zero using the last line.
– If b 6= 1, divide the ith line by b.

but the three operations might be executed in a different order, depending on the values of weights associated
to the basic operations (table 1): for example, it could be more convenient first to divide and then to subtract
twice

(3, 0, . . . 0, 3, 0, . . . , 0, 3)⇒ (1, 0, . . . 0, 1, 0, . . . , 0, 1)⇒ (0, . . . 0, 1, 0, . . . , 0, 1)⇒ Sj

or division could be better done in the middle:

(1, 0, . . . 0, 3, 0, . . . , 0, 3)⇒ (0, 0, . . . 0, 3, 0, . . . , 0, 3)⇒ (0, . . . 0, 1, 0, . . . , 0, 1)⇒ Sj

The various sequence possibilities correspond to different coefficients in basic operations (different weight
constants are used). A very small number of coefficient values comparisons is sufficient to obtain the result,
without having to recurse more on this line entries.

Another interesting case: exactly one not singleton line. Here the global analysis is precise, too.

Proposition 5. Let Mν ∈ GL(m,Z) with #{i | M (i)
ν is not singleton} = 1. Then the weight estimate can

be computed exactly.

Proof. In this case m − 1 basic operation of type 1 (and possibly 1 division) are surely needed, because at
most one new 0 can appear at each step. Similar considerations as the ones appearing in the precedent case
apply here, in order to recognise which is the best sequence order.

Similar considerations may be done, mutatis mutandis, reasoning with columns.

7 Implementation and results

The authors developed code in C++ based on the STL library to make experiments. In this section we
expose some of the obtained results. The basic operations are indicated between matrices using the following
notation:

i ±= j : jth line is destructively added to or subtracted from ith line
i −= (c)j : jth line multiplied by c is destructively subtracted from ith line
(c)i ±= j : jth line is destructively added or subtracted from ith line multiplied by c
i /= (c) : the entries in ith line are all destructively divided by c
i� (c) : the entries in ith line are all destructively divided by 2c

7.1 Toom-2.5

This case could also be treated by hand, and we present it as a checking test. Starting from the matrix
defined by the resonably good values {∞,−1, 1, 0} we obtained the (expected) IS indicated below. Note
that det(A3,2) = 2, and therefore at least a division by 2 (shifting) is necessary. The nodes that were really
inserted in the Toom-graph are 44.

A3,2 =


1 0 0 0
1 1 1 1
1 −1 1 −1
0 0 0 1

 2−=3
=⇒


1 0 0 0
0 2 0 2
1 −1 1 −1
0 0 0 1

 2�(1)

=⇒
3−=1


1 0 0 0
0 1 0 1
0 −1 1 −1
0 0 0 1

 3+=2
=⇒
2−=4

I4

8

7.2 Toom-3

GMP solution : We first present the IS used by GMP library starting from the matrix obtained by using
{∞, 2,−1, 1, 0}, and compute its weight wGMP according to our definitions.

A3 =


1 0 0 0 0

16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1


2+=(2)3

=⇒


1 0 0 0 0

18 6 6 0 3
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1


2/=(3)

=⇒
3+=4


1 0 0 0 0
6 2 2 0 1
2 0 2 0 2
1 1 1 1 1
0 0 0 0 1

2+=5
=⇒


1 0 0 0 0
6 2 2 0 2
2 0 2 0 2
1 1 1 1 1
0 0 0 0 1



2�(1)
=⇒

3�(1)


1 0 0 0 0
3 1 1 0 1
1 0 1 0 1
1 1 1 1 1
0 0 0 0 1


2−=(2)1

=⇒


1 0 0 0 0
1 1 1 0 1
1 0 1 0 1
1 1 1 1 1
0 0 0 0 1

4−=2
=⇒


1 0 0 0 0
1 1 1 0 1
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1

2−=3
=⇒


1 0 0 0 0
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1

3−=1
=⇒
3−=5

I5

wGMP = 8 · COMBINATION WEIGHT + DIVISION WEIGHT + 2 · SHIFT WEIGHT + 2· 1 2 WEIGHT

Surprisingly enough, just by applying criterion (A) our program was able to compute solutions having
a weight less than GMP’s. We present here two of them, both obtained from the matrix defined by the
interpolating values

{
∞,−1, 1, 1

2 , 0
}

. Because of matrix central symmetry, the same IS (with adapted line
and column indexes) can be applied to the matrix used by GMP. The general weight we obtain is

8·COMBINATION WEIGHT + DIVISION WEIGHT + SHIFT WEIGHT +
min(1 X WEIGHT, SHIFT WEIGHT) + 1 2 WEIGHT

and depending on SHIFT WEIGHT and 1 X WEIGHT values, the below indicated solutions are obtained.

1st solution : SHIFT WEIGHT > 1 X WEIGHT

Note that det(A3) = 12, and the division is “split” into a shifting and a division by 6. By using estimates,
the nodes that were really inserted in the Toom-graph are only 11205. Considering also criterion (B) –
applied in the IS used by GMP – we have that the graph get bigger, reaching 123213 nodes, but the optimal
found solution IS does not change.

Moreover, independently from weight values, one has w(IS) < wGMP .

A3 =


1 0 0 0 0
1 −1 1 −1 1
1 1 1 1 1
1 2 4 8 16
0 0 0 0 1

4−=2
=⇒


1 0 0 0 0
1 −1 1 −1 1
1 1 1 1 1
0 3 3 9 15
0 0 0 0 1

2−=3
=⇒


1 0 0 0 0
0 −2 0 −2 0
1 1 1 1 1
0 3 3 9 15
0 0 0 0 1

 3−=1
=⇒

2/=(−1)

Ã3 =


1 0 0 0 0
0 2 0 2 0
0 1 1 1 1
0 3 3 9 15
0 0 0 0 1


4−=(3)3

=⇒
2�(1)


1 0 0 0 0
0 1 0 1 0
0 1 1 1 1
0 0 0 6 12
0 0 0 0 1


4/=(6)

=⇒
3−=2


1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 2
0 0 0 0 1

 3−=5
=⇒

4−=(2)5


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2−=4
=⇒ I5

9

2nd solution : SHIFT WEIGHT < 1 X WEIGHT

Here only 11862 nodes are generated. The initial operations are the same as above: the different behavior
begins from the fourth matrix Ã3.

Ã3 =


1 0 0 0 0
0 2 0 2 0
0 1 1 1 1
0 3 3 9 15
0 0 0 0 1


4/=(3)

=⇒
2�(1)


1 0 0 0 0
0 1 0 1 0
0 1 1 1 1
0 1 1 3 5
0 0 0 0 1

4−=3
=⇒


1 0 0 0 0
0 1 0 1 0
0 1 1 1 1
0 0 0 2 4
0 0 0 0 1


4�(1)

=⇒
3−=2


1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 2
0 0 0 0 1

 3−=5
=⇒

4−=(2)5


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2−=4
=⇒ I5

With our program we tested all the matrices obtained from interpolating points {∞, a, b, c, 0}, where
a, b, c ∈

{
±1,±2, . . . ,±16,± 1

2 ,±
1
3 , . . . ,±

1
16

}
. No IS with weight smaller than the two presented above was

found. Paths with the same weight are substantially equivalent to these ones and were found starting from
interpolating points {∞, 1,−1,±2, 0} and

{
∞, 1,−1,± 1

2 , 0
}

.

7.3 Toom-3.5

Starting from the matrix defined by the values {∞, 2,−2, 1,−1, 0} we obtained the sequence of operations
indicated below, with weight

12 · COMBINATION WEIGHT + 2 · DIVISION WEIGHT + 2 · SHIFT WEIGHT + 2 · 1 2 WEIGHT

A4,3 =


1 0 0 0 0 0

32 16 8 4 2 1
−32 16 −8 4 −2 1

1 1 1 1 1 1
−1 1 −1 1 −1 1

0 0 0 0 0 1


3−=2
=⇒
5−=4


1 0 0 0 0 0

32 16 8 4 2 1
−64 0 −16 0 −4 0

1 1 1 1 1 1
−2 0 −2 0 −2 0

0 0 0 0 0 1


2−=6
=⇒

3�(1)


1 0 0 0 0 0

32 16 8 4 2 0
−32 0 −8 0 −2 0

1 1 1 1 1 1
−2 0 −2 0 −2 0

0 0 0 0 0 1



2+=3
4−=6=⇒

5/=(−1)


1 0 0 0 0 0
0 16 0 4 0 0

−32 0 −8 0 −2 0
1 1 1 1 1 0
2 0 2 0 2 0
0 0 0 0 0 1


3+=5
=⇒

5�(1)


1 0 0 0 0 0
0 16 0 4 0 0

−30 0 −6 0 0 0
1 1 1 1 1 0
1 0 1 0 1 0
0 0 0 0 0 1



3/=(−6)

=⇒
4−=5


1 0 0 0 0 0
0 16 0 4 0 0
5 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1


3−=(4)1

=⇒
2−=(4)4


1 0 0 0 0 0
0 12 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1


5−=3
=⇒

2/=(12)


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


3−=1
=⇒
4−=2

I6

8 Conclusions

We presented a method to determine an optimal sequence of basic operations inverting a particular matrix
appearing in Toom multiplication methods through an optimized exhaustive research on graphs. Weights for
each basic operation are introduced, which determine the inversion cost for the matrices appearing in the
intermediate steps. An interval-like estimate analysis permit to know in advance that a path in the graph is
not optimal, saving thus time and space.

Intermediate version of Toom methods are also presented, to show more results. As an interesting result,
we were able to determine two new inversion sequences for Toom-3 matrix, which seem, to the best of our
knowledge, to be new, and good alternatives to the one proposed in the actual version of GMP library.

10

References

1. Chung, J., Anwar Hasan, M. Asymmetric squaring formulae Technical Report, CACR 2006-24, University of
Waterloo (2006) http://ln.bodrato.it/cacr2006-24_pdf

2. Cook, S.A. On the Minimum Computation Time of Functions Thesis, Harvard University, pp. 51-77 (1966)
3. The GNU Multiplication Library (GMP) documentation http://www.swox.com/gmp/#DOC

4. Karatsuba, A., Ofman, Yu. Multiplication of multidigit numbers on automata Soviet Physics-Doklady, 7, 595-596
(1963); translation from Dokl. Akad. Nauk SSSR, 145:2, 293-294, (1962)

5. Knuth, D.E. The Art of Computer Programming, Vol. 2, Second Edition Addison-Wesley, Reading Mass., Chapter
4, Section 3.3, pp. 278-301 (1981)

6. Toom, A.L. The Complexity of a Scheme of Functional Elements Realizing the Multiplication of Integers Soviet
Mathematics, Vol. 3, pp. 714-716 (1963)

7. Schonhage, A., Strassen, V. Schnelle Multiplikation großer Zahlen Computing 7 pp. 281-292 (1971)
8. St Denis, T., Rasmussen, M., Rose, G. Multi-precision math (tommath library documentation) http://math.

libtomcrypt.com/files/tommath.pdf

9. Zuras, D. On Squaring and Multiplying Large Integers 11th IEEE Symposium on Computer Arithmetic pp.
260-271 (1993)

Appendix A: Toom-4, Toom-4.5 and Toom-5

We present here some found IS for the indicated methods, that were obtained not in a completely automatic
way. Because of limited computing resources, some initial steps were done manually, while the general
automatical analysis starts some matrix later.

Toom-4

Starting from the matrix defined by the values
{
∞, 2, 1,−1, 1

2 ,−
1
2 , 0
}

we obtained the sequence of operations
indicated below, with weight

18 · COMBINATION WEIGHT + 3 · DIVISION WEIGHT + SHIFT WEIGHT +
min (1 X WEIGHT , SHIFT WEIGHT) + 2 · 1 X WEIGHT + 4 · (1 2 WEIGHT)

Depending on SHIFT WEIGHT and 1 X WEIGHT values, we present the two corresponding solutions.

1st solution : SHIFT WEIGHT > 1 X WEIGHT

A4 =



1 0 0 0 0 0 0
64 32 16 8 4 2 1
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1 2 4 8 16 32 64
1 −2 4 −8 16 −32 64
0 0 0 0 0 0 1


2+=5
6−=5=⇒
4−=3



1 0 0 0 0 0 0
65 34 20 16 20 34 65
1 1 1 1 1 1 1
0 −2 0 −2 0 −2 0
1 2 4 8 16 32 64
0 −4 0 −16 0 −64 0
0 0 0 0 0 0 1


5−=1

5−=(64)7
=⇒
4�1



1 0 0 0 0 0 0
65 34 20 16 20 34 65
1 1 1 1 1 1 1
0 −1 0 −1 0 −1 0
0 2 4 8 16 32 0
0 −4 0 −16 0 −64 0
0 0 0 0 0 0 1



3+=4
(2)5+=6

=⇒



1 0 0 0 0 0 0
65 34 20 16 20 34 65
1 0 1 0 1 0 1
0 −1 0 −1 0 −1 0
0 0 8 0 32 0 0
0 −4 0 −16 0 −64 0
0 0 0 0 0 0 1


2−=(65)3

4/=(−1)
=⇒

6/=(−1)

3−=7
3−=1



1 0 0 0 0 0 0
0 34 −45 16 −45 34 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 8 0 32 0 0
0 4 0 16 0 64 0
0 0 0 0 0 0 1


2+=(45)3

5−=(8)3
=⇒



1 0 0 0 0 0 0
0 34 0 16 0 34 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 0 24 0 0
0 4 0 16 0 64 0
0 0 0 0 0 0 1


5/=(24)
6−=2=⇒

2−=(16)4

Ã4 =



1 0 0 0 0 0 0
0 18 0 0 0 18 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 0 1 0 0
0 −30 0 0 0 30 0
0 0 0 0 0 0 1


2/=(18)
3−=5=⇒



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 1 0 1 0 1 0
0 0 0 0 1 0 0
0 −30 0 0 0 30 0
0 0 0 0 0 0 1


4−=2
=⇒

6+=(30)2



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 60 0
0 0 0 0 0 0 1


6/=(60)

=⇒



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


2−=6=⇒ I7

11

http://ln.bodrato.it/cacr2006-24_pdf
http://www.swox.com/gmp/#DOC
http://math.libtomcrypt.com/files/tommath.pdf
http://math.libtomcrypt.com/files/tommath.pdf

2nd solution : SHIFT WEIGHT < 1 X WEIGHT

The initial operations are the same as above: the difference begins from the matrix Ã4.

Ã4 =



1 0 0 0 0 0 0
0 18 0 0 0 18 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 0 1 0 0
0 −30 0 0 0 30 0
0 0 0 0 0 0 1


2/=(18)
3−=5=⇒

6/=(30)



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 1 0 1 0 1 0
0 0 0 0 1 0 0
0 −1 0 0 0 1 0
0 0 0 0 0 0 1


4−=2=⇒
6+=2



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1


6�(1)

=⇒



1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


2−=6=⇒ I7

Toom-4.5

Starting from the matrix defined by the values
{
∞,−1,−2, 1

2 , 1, 2,−
1
2 , 0
}

we obtained the sequence of oper-
ations indicated below, with weight

22 · COMBINATION WEIGHT + 4 · DIVISION WEIGHT + SHIFT WEIGHT + 3 · 1 X WEIGHT + 6 · 1 2 WEIGHT

A5,4 =



1 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 −1 1
−128 64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64 128
1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1
1 −2 4 −8 16 −32 64 −128
0 0 0 0 0 0 0 1


2+=5
7+=4=⇒
3−=6



1 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2

−256 0 −64 0 −16 0 −4 0
1 2 4 8 16 32 64 128
1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1
2 0 8 0 32 0 128 0
0 0 0 0 0 0 0 1



4−=2
(2)6+=3

=⇒
2�(1)



1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1

−256 0 −64 0 −16 0 −4 0
1 0 4 6 16 30 64 126
1 1 1 1 1 1 1 1
0 128 0 32 0 8 0 2
2 0 8 0 32 0 128 0
0 0 0 0 0 0 0 1


5−=2

6−=(128)2
=⇒

(2)3+=7



1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1

−510 0 −120 0 0 0 120 0
1 0 4 6 16 30 64 126
1 0 1 0 1 0 1 0
0 0 0 −96 0 −120 0 −126
2 0 8 0 32 0 128 0
0 0 0 0 0 0 0 1



4+=6
2−=8=⇒



1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0

−510 0 −120 0 0 0 120 0
1 0 4 −90 16 −90 64 0
1 0 1 0 1 0 1 0
0 0 0 −96 0 −120 0 −126
2 0 8 0 32 0 128 0
0 0 0 0 0 0 0 1


(2)4−=7

6+=(126)8
=⇒

7−=(32)5



1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0

−510 0 −120 0 0 0 120 0
0 0 0 −180 0 −180 0 0
1 0 1 0 1 0 1 0
0 0 0 −96 0 −120 0 0

−30 0 −24 0 0 0 96 0
0 0 0 0 0 0 0 1



(5)7−=3

4/=(−180)
=⇒

6/=(−24)

3+=(510)1



1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0
0 0 −120 0 0 0 120 0
0 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0
0 0 0 4 0 5 0 0

360 0 0 0 0 0 360 0
0 0 0 0 0 0 0 1


3/=(−120)

7/=(360)
=⇒

6−=(4)4

2−=4



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


5−=7=⇒
4−=6
7−=1



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


3+=7=⇒
5−=3

I8

12

Toom-5

Starting from the matrix defined by the values
{
∞,−2, 1

2 , 4, 2,−1, 1,− 1
2 , 0
}

we obtained the sequence of
operations indicated below, with weight

32 · COMBINATION WEIGHT + 5 · DIVISION WEIGHT + 2 · SHIFT WEIGHT + 6 · 1 X WEIGHT + 8 · 1 2 WEIGHT

A5 =



1 0 0 0 0 0 0 0 0
256 −128 64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64 128 256
48 47 46 45 256 64 16 4 1

256 128 64 32 16 8 4 2 1
1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1
1 −2 4 −8 16 −32 64 −128 256
0 0 0 0 0 0 0 0 1


6−=7
2−=5=⇒
4−=9

4−=(216)1

8−=3



1 0 0 0 0 0 0 0 0
0 −256 0 −64 0 −16 0 −4 0
1 2 4 8 16 32 64 128 256
0 47 46 45 256 64 16 4 0

256 128 64 32 16 8 4 2 1
0 −2 0 −2 0 −2 0 −2 0
1 1 1 1 1 1 1 1 1
0 −4 0 −16 0 −64 0 −256 0
0 0 0 0 0 0 0 0 1



6�(1)

(2)5+=2
=⇒

2/=(−1)

8/=(−1)



1 0 0 0 0 0 0 0 0
0 256 0 64 0 16 0 4 0
1 2 4 8 16 32 64 128 256
0 47 46 45 256 64 16 4 0

512 0 128 0 32 0 8 0 2
0 −1 0 −1 0 −1 0 −1 0
1 1 1 1 1 1 1 1 1
0 4 0 16 0 64 0 256 0
0 0 0 0 0 0 0 0 1


7+=6
=⇒

6/=(−1)



1 0 0 0 0 0 0 0 0
0 256 0 64 0 16 0 4 0
1 2 4 8 16 32 64 128 256
0 47 46 45 256 64 16 4 0

512 0 128 0 32 0 8 0 2
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 4 0 16 0 64 0 256 0
0 0 0 0 0 0 0 0 1



3−=7
5−=(512)7

=⇒



1 0 0 0 0 0 0 0 0
0 256 0 64 0 16 0 4 0
0 2 3 8 15 32 63 128 255
0 47 46 45 256 64 16 4 0
0 0 −384 0 −480 0 −504 0 −510
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 4 0 16 0 64 0 256 0
0 0 0 0 0 0 0 0 1


(2)3−=8
7−=1=⇒
7−=9
8+=2



1 0 0 0 0 0 0 0 0
0 256 0 64 0 16 0 4 0
0 0 6 0 30 0 126 0 510
0 47 46 45 256 64 16 4 0
0 0 −384 0 −480 0 −504 0 −510
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 0
0 260 0 80 0 80 0 260 0
0 0 0 0 0 0 0 0 1



5+=3
8−=(80)6

=⇒
3−=(510)9

4−=2



1 0 0 0 0 0 0 0 0
0 256 0 64 0 16 0 4 0
0 0 6 0 30 0 126 0 0
0 16128 4096 960 256 48 16 0 0
0 0 −378 0 −450 0 −378 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 0
0 180 0 0 0 0 0 180 0
0 0 0 0 0 0 0 0 1


(3)3+=5

8/=(180)
=⇒

5+=(378)7

2�(2)



1 0 0 0 0 0 0 0 0
0 64 0 16 0 4 0 1 0
0 0 −360 0 −360 0 0 0 0
0 16128 4096 960 256 48 16 0 0
0 0 0 0 −72 0 0 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



6−=2
5/=(−72)

=⇒
3/=(−360)

2−=8



1 0 0 0 0 0 0 0 0
0 63 0 16 0 4 0 0 0
0 0 1 0 1 0 0 0 0
0 16128 4096 960 256 48 16 0 0
0 0 0 0 1 0 0 0 0
0 −63 0 −15 0 −3 0 0 0
0 0 1 0 1 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


7−=3
=⇒

4−=(256)5

3−=5



1 0 0 0 0 0 0 0 0
0 63 0 16 0 4 0 0 0
0 0 1 0 0 0 0 0 0
0 16128 4096 960 0 48 16 0 0
0 0 0 0 1 0 0 0 0
0 −63 0 −15 0 −3 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


13

4−=(4096)3

4−=(16)7
=⇒

4+=(256)6



1 0 0 0 0 0 0 0 0
0 63 0 16 0 4 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −2880 0 −720 0 0 0
0 0 0 0 1 0 0 0 0
0 −63 0 −15 0 −3 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


6+=2
=⇒

(180)2+=4



1 0 0 0 0 0 0 0 0
0 11340 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −2880 0 −720 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



2/=(11340)

4+=(720)6
=⇒



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −2160 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


4/=(−2160)

6−=4=⇒
8−=2

I9

Appendix B: Application to asymmetrical squaring

Chung and Anwar Hasan showed different linear systems which can be built, but only for squaring. We refer
to their report [1] for all the details. Here we just present the result given by our software applied to one of
their matrices, although not optimized for this case.

The report proposed an inversion algoritm for the 5-way squaring method using temporary variables with
a total cost of 18 · COMBINATION WEIGHT + 7 · SHIFT WEIGHT. Starting from the same matrix, our program
found the following IS, with no temporary variables use and smaller weight:

16 · COMBINATION WEIGHT + 3 · SHIFT WEIGHT

As5 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1
1 0 −1 0 1 0 −1 0 1
0 1 0 −1 0 1 0 −1 0
1 1 0 −1 −1 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


3+=4
=⇒
7−=1
7−=8
7−=2



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 2
1 1 1 1 1 1 1 1 1
1 0 −1 0 1 0 −1 0 1
0 1 0 −1 0 1 0 −1 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


3�(1)
=⇒



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1
1 0 −1 0 1 0 −1 0 1
0 1 0 −1 0 1 0 −1 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



5+=3
4−=3=⇒



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
2 0 0 0 2 0 0 0 2
0 1 0 −1 0 1 0 −1 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


5�(1)
6+=4=⇒



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 1
0 2 0 0 0 2 0 0 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


4−=8
6�(1)
=⇒
3−=5



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



4−=6
=⇒
5−=1
5−=9



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


6−=2
=⇒
7+=4
7+=5



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


3−=7=⇒ I9

14

	What About Toom-Cook Matrices Optimality ?
	Marco Bodrato and Alberto Zanoni

