
Iterative Karatsuba For Multivariate Polynomial Multiplication

Alberto Zanoni

Centro “Vito Volterra” – Università di Roma “Tor Vergata”
Via Columbia 2 – 00133 Roma, Italy

zanoni@volterra.uniroma2.it

Abstract. This work deals with Karatsuba method for multivariate polynomials, not recursing on
variables number, but using an iterative scheme, with an eye to a better parallelism exploitation.
Integers base 2 and 3 expansions are used in order to access the needed data.

AMS Subject Classification: 11A05, 11A25, 11K65, 11Y70

Keywords and phrases: Multivariate polynomials multiplication, Karatsuba

1 Introduction

The first subquadratic multiplication method for univariate polynomials was introduced by Karatsuba in [2].
The product of two linear polynomials a(x) = a1x+a0, b(x) = b1x+ b0 is computed as a0b0 +((a0 +a1)(b0 +
b1)−a0b0−a1b1)x+(a1b1)x

2, so that just three coefficients multiplications are sufficient, instead of the four
needed by the high school method (a0b0, a1b0, a0b1, a1b1). It is a now classical evaluate-multiply-interpolate
(EMI) scheme whose recursive use results in an algorithm with asymptotic complexity O(nlog

2
3).

The (degree) recursion cost is a critical point of Karatsuba method, which makes it difficult to take
advantage of parallelism at hardware level. Univariate approaches towards recursion reduction have been
considered e.g. in Weimerskirch and Paar [7], Montgomery [5], Erdem and Koç [1] and Kounavis [3].

For multivariate polynomials, fast multiplication was considered e.g. by Moenck [4] by either:

1. recursing on every variable, with an approach having as basic case the univariate one.
2. using the Kronecker trick to reduce the problem to the univariate case, and then applying univariate

algorithms (typically, the FFT approach of Schönhage and Strassen [6]).

Using approach 1, one has therefore to face a double recursion: in addition to the factors degree, the
variables number enters the game. We’ll show how Karatsuba method for multivariate polynomials can be
realized iteratively on the number of variables, removing thus one “level” of recursion.

2 Multivariate “square” polynomials

We consider polynomials a(X), b(X) ∈ R[X], where R is a commutative ring with identity and X =
(x1, . . . , xn) is a set of variables. We use the max-degree definition for multindexes α = [α1, . . . , αn] ∈ A ⊂ N

n:

a(X) =
∑

α∈A

aαXα ∈ R[X] =⇒ deg∞(a) = ‖a‖ = max
α∈A
aα 6=0

{

max
i=1,...,n

{αi}

}

In order to have a “geometrical” view of the problem, it is useful to consider multindexes as points with integer
coordinates in the n-dimensional space N

n. In the rest of the paper we assume that α ∈ A =⇒ aα 6= 0,
that is, the multindex set coincides with the polynomial support.

2.1 Support issues

Considering max-degree definition, dense polynomials have a multindex support A which is nothing but a
discrete n-dimensional hypercube (we speak about “square” polynomials). In the following, we will use the
word “cube” as a shorthand for hypercube and “face” as a shorthand for hyperface.

2 Iterative Karatsuba For Multivariate Polynomial Multiplication

Vertexes, sides, d-dimensional faces of these cubes are particular subsets of A. Let s = ℓ + 1 be the
number of points forming a side of the cube, so that the cube is composed by sn points. A (support) face
with dimension 0 6 d 6 n can be described by choosing indexes 1 6 i1 < · · · < in−d 6 n and values
v1, . . . vn−d ∈ {0, ℓ}, and is defined as

F (ℓ)
v1,...,vn−d

i1,...,in−d
= {α ∈ A | ‖α‖ 6 ℓ, αij

= vj : j = 1, . . . , n− d}

2.2 Polynomial faces

Consider a polynomial a(X) ∈ R[X] and a face F = F (‖a‖)
v1,...,vn−d

i1,...,in−d
: we define

Definition 1. a polynomial face aF (X) of a(X) as aF (X) =
∑

α∈F

aαXα

We indicate with Fd the set of faces with dimension d (each having ‖a‖d points) and with ∂(F) the dimension
of a face F . As we can choose n − d among n indexes and for each of them we have two possibilities for
the corresponding v value, we have #Fd = 2n−d

(
n

n−d

)
= 2n−d

(
n
d

)
. The extreme cases with d = 0 and d = n

correspond to vertexes and the whole cube, respectively. The total number Fn of faces is then

Fn =

n∑

d=0

#Fd =

n∑

d=0

2n−d

(
n

d

)

=

n∑

d=0

1d · 2n−d

(
n

d

)

= (1 + 2)n = 3n

Proposition 1. Polynomial multiplication maps corresponding faces to faces.

If a(X) · b(X) = c(X), Fa = F (‖a‖)
v1,...,vn−d

i1,...,in−d
, Fb = F (‖b‖)

v1,...,vn−d

i1,...,in−d
and F (‖c‖)

v1,...,vn−d

i1,...,in−d
we have

Fa + Fb = Fc ; aFa
(X) · bFb

(X) = cFc
(X)

Faces are related in a natural way to homogenization based on max-degree definition, that we call multiho-
mogenization.

Definition 2. Let a(X) ∈ R[X], H = (h1, . . . , hn) a set of new variables and u = (1, . . . , 1) ∈ N
n. Let

Z = (z1, . . . , z2n) the vector formed by X and H variables, so that xi = zi if i 6 n and hi = zn+i otherwise.

The multihomogenization of a is the below defined polynomial ah(X,H) ∈ R[X,H] = R[Z].

a(Z) = ah(X,H) =
∑

α∈A

aαXαH(‖a‖u−α) = H‖a‖u
∑

α∈A

aα
Xα

Hα

Multidehomogenization corresponds to an evaluation where n variables, whose indexes {i1, . . . , in} have to

be specified, are set equal to 1:

ha(Z) = a(z1, . . . , zi1−1, 1, zi1+1, . . . , zij−1, 1, zij+1, . . . , zin−1, 1, zin+1, . . . , z2n)

Obviously, if ij = n + j we have hah(X,H) = ah(X,u) = a(X).

We note that if we consider F = F (‖a‖)
v1,...,vn−d

i1,...,in−d
and partially evaluate ah(X,H) setting

xij
= 0 for all j such that vj = 0 ; hij

=

{

0 for all j such that vj = ‖a‖

1 otherwise
(1)

we obtain exactly aF (X). Theoretically speaking, considering polynomial faces is therefore equivalent to
consider particular evaluations of (previously multihomogenized) polynomials.

3 Multivariate Karatsuba

Karatsuba multiplication method appeared first in [2] for univariate polynomials and is based on a evaluate-
multiply-interpolate (EMI) scheme, which is the core of the process described below in steps. Its extension
to the multivariate case is immediate: just consider the isomorphism

R[x1, . . . , xn] ∋ a(X)→ â(xn) ∈ R[x1, . . . , xn−1][xn]

Alberto Zanoni 3

mapping n-variate polynomials to univariate polynomials with (n− 1)-variate polynomial coefficients.
Recursion on the number of variables is the simplest way to generalize Karatsuba method to the multi-

variate case, but it weaks the possible use of parallelism. We therefore look for an iterative version on the
number of variables, so that parallelism can be possibly exploited in a more efficient way.

Before starting the EMI scheme description, we note that one could theoretically compute the product
first multihomogenizing factors, then computing the product and finally multidehomogenizing the result:

c(X) = (ah(X,H) · bh(X,H))∣∣H=u

By considering faces, we can “simulate” evaluations on factors multihomogenizations and the final multide-
homogenising process, and work in practice with just the original variables X.

Splitting : let D′ = max{‖a‖, ‖b‖} and D = ⌈(D′ + 1)/2⌉. Introduce new variables Y = (y1, . . . , yn) with
yi = xD

i and rewrite the factors as polynomials in y variables with coefficients aα, bβ ∈ R[X], so that
‖aα‖ < D and ‖bβ‖ < D:

a(X) = a(Y) =
∑

α∈A′

aαY α, ; b(X) = b(Y) =
∑

β∈A′

bβY β ,

We denote with ei = (0, . . . , 0, 1, 0, . . . , 0) the multindex with a single 1 entry in the ith position. Now, a
and b are polynomials with max-degree (in Y variables) equal to 1, so that the problem is to consider the
product c(Y) = a(Y)b(Y) when A′ = {‖α‖ 6 1} = {α ∈ {0, 1}n}. Detailing by degree, the first factor
becomes then

a(Y) =
∑

α∈A′

aαY α = a(0,...,0) +
n∑

i=1

aei
yi +

n∑

i=1

n∑

j=i+1

aei+ej
yiyj + · · ·+ au

n∏

i=1

yi

and similarly for b. Here all multindexes entries for a and b are either 0 or 1, while for c they can be 0,
1 or 2 (‖ c ‖ = 2). This means to consider, respectively, the vertexes of a n-dimensional hypercube with
side length s = 2 and s = 3. Note that factors a, b, as they have now the same max-degree, have equal
faces.

Evaluation : The product to be computed has 3n coefficients, so we need to evaluate a and b in 3n points.
As some particular evaluations for multihomogenized polynomials are in practice nothing but evaluations
on original polynomial faces and there are exactly 3n of them, we may then realize (multihomogenization)
evaluation in practice by simply choosing a single evaluation point for each face – e.g. setting to 1 all
“surviving” face variables (xk with k 6= ij in equation 1).

Recursive multiplication : Compute recursively the 3n products: cF (δ1, . . . , δn) = aF (δ1, . . . , δn)bF (δ1,
. . . , δn) for all faces – where δi is 0 or 1, depending on the face.

Interpolation : We now know the values of c evaluated in 3n points. To recover coefficients, we have to
solve a classical interpolation problem. Compute them by inverting the matrix corresponding to the
evaluation.

Recomposition : Reconstruct explicitly c by using its just obtained coefficients.

Many complexity issues rely on evaluation and interpolation phases: the following sections will detail them.

4 Evaluation

The main aim of this and the following section is to minimize the number of needed operations. First of all,
note that vertexes c(v1,...,vn) = a(v1/2,...,vn/2)b(v1/2,...,vn/2) – with vi ∈ {0, 2} for i = 1, . . . , n – are directly
computed, and no evaluation at all is needed. There are 2n vertexes, so that E = 2(3n − 2n) values remain
to be computed (the multiplying constant 2 is due to the fact that there are two factors).

It is possible to have just a single sum per factor per face, recycling already computed values for faces
with smaller dimension. The idea is very simple: as every evaluated polynomial face ãF = aF (1, . . . , 1) with
∂(F) = d is a sum of 2d coefficients, it is sufficient to sum two (already evaluated) polynomial sub-faces with
dimension d−1 forming ãF . This implies that faces with smaller dimension have to be evaluated before faces
with greater dimension. We then need a way to fastly identify faces and their dimensions: in order to do this
we’ll use base 2 and 3 integer expansions.

4 Iterative Karatsuba For Multivariate Polynomial Multiplication

Definition 3. Let m ∈ N: we indicate the ordered vector of the coefficients of m expansion in base B ∈ N

with n digits, where n > ℓ = ⌊logB m⌋, as follows

m =

ℓ∑

i=0

miB
i =⇒ V n

B (m) = [m0, . . . ,mℓ, 0, . . . , 0
︸ ︷︷ ︸

n−1−l

]

Vice versa, for a vector v = [m0, . . . ,mn−1] with 0 6 mi < B we define

IB(v) = IB([m0, . . . ,mn−1]) =

n−1∑

i=0

miB
i

so that ∀m, ∀B one has IB(V n
B (m)) = m.

In the following, everything concerning a applies similarly for b. By using definition 3, we’ll use integers as
indexes, meaning aI2(α) = aα and cI3(γ) = cγ every time it makes sense. We suppose that aα (cγ) coefficients
are (will be) memorized in an array A (C) with 2n (3n) entries, such that the entry in position i – starting
from 0 – is ai (ci).

Example 1. For n = 3, we have

A = [a000, a001, a010, a011, a100, a101, a110, a111]

B = [b000, b001, b010, b011, b100, b101, b110, b111]

C = [c000, c001, c002, c010, c011, c012, c020, c021, c022,
c100, c101, c102, c110, c111, c112, c120, c121, c122,
c200, c201, c202, c210, c211, c212, c220, c221, c222]

As we said, we must evaluate the 3n faces working by increasing dimension: apart from the 2n vertexes which
need no operation, we have the n2n−1 sides, the n(n− 1)2n−3 bidimensional faces, and so on. One has that
for every index 0 6 i < 3n the corresponding face Fi dimension is given by the number of “1” in i expansion
in base 3: if oi,j = V n

3 (i)[j] we have

∂(Fi) =

n−1∑

j=0

oi,j(2− oi,j)

To specify an order to analyze faces, we use a multindexes “order” vector ordn on C. There are many
possible orderings, as the only essential requirement is that the order is strict on blocks: for d1 < d2, all
indexes corresponding to faces in Fd1

should be smaller than the ones corresponding to Fd2
. Ordering inside

each single block Fd does not matter.

Example 2. For n = 3, one possible good ordering for faces is

ord3 =
[
[0,0,0], [0,0,2], [0,2,0], [2,0,0], [0,2,2], [2,0,2], [2,2,0], [2,2,2], 〈vertexes〉
[0,0,1], [0,2,1], [2,0,1], [2,2,1], [0,1,0], [0,1,2], [2,1,0], [2,1,2], [1,0,0], [1,0,2], [1,2,0], [1,2,2], 〈sides〉
[0,1,1], [2,1,1], [1,0,1], [1,2,1], [1,1,0], [1,1,2], 〈faces〉
[1,1,1]

]
〈whole cube〉

We suppose that two vectors A′, B′ with 3n elements each are available (indexed from 0 to 3n−1). They will
contain the evaluations for the two factors. After having computed the vector ordn, evaluation can begin.

– For the first 2n entries (vertexes) γ = ordn[0], . . . , ordn[2n − 1], simply set

A′[I3(γ)] = A[I2(γ/2)] ; B′[I3(γ)] = B[I2(γ/2)]

Note that here γ/2 ∈ N
n, because γ entries are all 0 or 2, so that we obtain valid multindexes.

– For every other index i = 2n, 2n + 1, . . . , 3n − 1, consider ordn[i] and look for an entry with value 1 in it
(as the corresponding face has dimension greater than 0, there is surely at least one). Let’s suppose the
jth entry is such1. We just have to sum the two (already computed) values in positions I3(ordn[i]− ej)
and I3(ordn[i] + ej). If h = I3(ordn[i]), this means

A′[h] = A′[h− 3j] +A′[h + 3j] ; B′[h] = B′[h− 3j] + B′[h + 3j]

1 As finding base expansion digits is usually done by successive divisions by B and remainders computation, it is
convenient to consider the position of the first remainder equal to 1 that comes out.

Alberto Zanoni 5

We thus have exactly E additions in total. Once evaluation is completed, to obtain the interpolating values
it is now sufficient to recursively compute the products

C[i] = A′[i] · B′[i] for all i = 0, . . . , 3n − 1

4.1 Temporary variables number reduction

We note that it is not difficult to avoid one temporary vector, say B′. One can save the second factor
evaluations directly in C, with indexes shifted by 1, so that C[i] will contain the value B′[i + 1] for i =
0, . . . , 3n − 2. Evaluation should of course take care of this indexes shift and refer directly to B for b0

accessing. The recursive multiplications should finally be executed in a top-down style:

C[i] = A′[i] · C[i− 1] for all i = 3n − 1, . . . , 1

C[0] = A[0] · B[0]

Working this way, the extra needed space is halved to just 3n extra temporaries. For small values of n
one can write explicit code taking direct benefit of all entries corresponding to vertexes, which can be the
last ones to be filled, and be therefore used in intermediate computations as temporary variables.

5 Interpolation

In this phase the product coefficients are recovered by working on the just computed values in C. The idea
is someway dual with respect to evaluation phase: as we there had to start from lower-dimensional faces
values in order to obtain all other ones, we start here from values corresponding to higher-dimensional faces.
What is done here is essentially a clever application of inclusion-exclusion principle, taking benefit of already
computed intermediate values.

The plain inclusion-exclusion principle requires 3d−1 operations for every face with dimension d. Summing
over all faces, we have that one would in total need

Iincl.−excl. =

n∑

d=0

#Fd · (3
d − 1) =

n∑

d=0

(
n

d

)

2n−d3d −

n∑

d=0

(
n

d

)

2n−d = (2 + 3)n − (2 + 1)n = 5n − 3n

operations (additions/subtractions). We instead reason by recycling faces values obtained along the way.

A face F with ∂(F) = d > 1 has 2d subfaces with dimension d − 1. Loosely speaking, if we “remove”
all (d− 1)-subfaces, only the corresponding correct value will remain. This removing process corresponds in
practice to successive subtractions of “intermediate” values as soon as they are available. The total number
of needed subtractions is therefore much smaller than before:

I =

n∑

d=1

2d · #Fd = 2

n∑

d=1

d2n−d

(
n

d

)

= 2

n−1∑

d=0

2d(n− d)
n!

d!(n− d)!
=

= 2

n−1∑

d=0

2d n(n− 1)!

d!(n− d− 1)!
= 2n

n−1∑

d=0

(
n− 1

d

)

2d = 2n(1 + 2)n−1 = 2n · 3n−1

The idea to organize subtractions is the following: starting from dimension d = n − 1 down to 1, let
F ∈ Fd′ a face having higher dimension d′ = d + 1, . . . , n, and let i be its index position in C. We consider
the “distance” D = d′ − d: we must subtract from C[i] the values corresponding to the two (sub-)faces of F
characterized by having 0 and 2, respectively, as entries in the position corresponding to the Dth entry of
V n

3 (i) (starting to count always from the same side) whose value is 1, and all other entries equal.

6 Iterative Karatsuba For Multivariate Polynomial Multiplication

Example 3. For n = 3, we obtain the reported se-
quence of interpolation operations (for brevity, we
don’t indicate I3 function to convert multindexes into
integers indexing C). “Blocks” of operations are sepa-
rated by double lines.

1 The first block only consists in removing two faces
from the whole cube.

2 In the second block, sides are appropriately sub-
tracted from all faces (first section) and two “par-
tial” faces are subtracted from the cube (second
section).

3 In the last block, vertexes are subtracted from all
sides (first section) “partial” sides are subtracted
from all faces (second section) and the last two
“partial” faces from the whole cube (very last line).

��

���
�
�
���

��
��
��
��

��
��
��
��

��

��

��

�
�
�
�

��

��

��

�
�
�
�

�
�
�

�
�
�

Cube

Faces

Sides

Vertexes

1

2

3

C[1, 1, 1]← C[1, 1, 1]− C[0, 1, 1]− C[2, 1, 1]

C[0, 1, 1]← C[0, 1, 1]− C[0, 0, 1]− C[0, 2, 1]
C[2, 1, 1]← C[2, 1, 1]− C[2, 0, 1]− C[2, 2, 1]
C[1, 0, 1]← C[1, 0, 1]− C[0, 0, 1]− C[2, 0, 1]
C[1, 2, 1]← C[1, 2, 1]− C[0, 2, 1]− C[2, 2, 1]
C[1, 1, 0]← C[1, 1, 0]− C[0, 1, 0]− C[2, 1, 0]
C[1, 1, 2]← C[1, 1, 2]− C[0, 1, 2]− C[2, 1, 2]
C[1, 1, 1]← C[1, 1, 1]− C[1, 0, 1]− C[1, 2, 1]

C[0, 0, 1]← C[0, 0, 1]− C[0, 0, 0]− C[0, 0, 2]
C[2, 0, 1]← C[2, 0, 1]− C[2, 0, 0]− C[2, 0, 2]
C[0, 2, 1]← C[0, 2, 1]− C[0, 2, 0]− C[0, 2, 2]
C[2, 2, 1]← C[2, 2, 1]− C[2, 2, 0]− C[2, 2, 2]
C[0, 1, 0]← C[0, 1, 0]− C[0, 0, 0]− C[0, 2, 0]
C[2, 1, 0]← C[2, 1, 0]− C[2, 0, 0]− C[2, 2, 0]
C[0, 1, 2]← C[0, 1, 2]− C[0, 0, 2]− C[0, 2, 2]
C[2, 1, 2]← C[2, 1, 2]− C[2, 0, 2]− C[2, 2, 2]
C[1, 0, 0]← C[1, 0, 0]− C[0, 0, 0]− C[2, 0, 0]
C[1, 2, 0]← C[1, 2, 0]− C[0, 2, 0]− C[2, 2, 0]
C[1, 0, 2]← C[1, 0, 2]− C[0, 0, 2]− C[2, 0, 2]
C[1, 2, 2]← C[1, 2, 2]− C[0, 2, 2]− C[2, 2, 2]
C[0, 1, 1]← C[0, 1, 1]− C[0, 1, 0]− C[0, 1, 2]
C[2, 1, 1]← C[2, 1, 1]− C[2, 1, 0]− C[2, 1, 2]
C[1, 0, 1]← C[1, 0, 1]− C[1, 0, 0]− C[1, 0, 2]
C[1, 2, 1]← C[1, 2, 1]− C[1, 2, 0]− C[1, 2, 2]
C[1, 1, 0]← C[1, 1, 0]− C[1, 0, 0]− C[1, 0, 0]
C[1, 1, 2]← C[1, 1, 2]− C[1, 0, 2]− C[1, 0, 2]
C[1, 1, 1]← C[1, 1, 1]− C[1, 1, 0]− C[1, 1, 2]

In appendix A a (very naive) implementation in gp-pari is provided.

6 Conclusions

We showed how Karatsuba method for multivariate polynomials can be implemented iteratively on the
number of variables, by using integers base 2 and 3 expansions in order to access the needed data.

7 Acknowledgements

This work is dedicated to the memory of the author’s primary school teacher, Giampiero Carlini.

References

1. Serdar S. Erdem and Çetin Kaya Koç. A less recursive variant of Karatsuba-Ofman algorithm for multiplying
operands of size a power of two. In IEEE Symposium on Computer Arithmetic, pages 28–35. IEEE Computer
Society, 2003.

2. Anatolii Alexeevich Karatsuba and Yuri Ofman. Multiplication of multidigit numbers on automata. Soviet Physics
Doklady, 7(7):595–596, 1963.

3. M. Kounavis. A new method for fast integer multiplication and its application to cryptography. In International
Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2007.

4. Robert T. Moenck. Practical fast polynomial multiplication. In SYMSAC ’76: Proceedings of the third ACM
symposium on Symbolic and algebraic computation, pages 136–148, New York, NY, USA, 1976. ACM Press.

5. Peter L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Trans. Comput., 54(3):362–369,
2005.

6. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3–4):281–292, 1971.
7. André Weimerskirch and Christof Paar. Generalizations of the Karatsuba algorithm for polynomial multiplication.

Technical report, Ruhr-Universität-Bochum, 2003.

Alberto Zanoni 7

A Multivariate Karatsuba code

We provide some functions written in gp-pari, implementing multivariate iterative Karatsuba algorithm.

This is a “service” function : it outputs a vector of symbolic coefficients representing a polynomial factor
with max-degree equal to 1. The second argument indicates which symbolic letter is used for coefficients.

coeffSquarePoly(n,a = "a") =

{

local (tmp = vector(2^n,i, concat(vector(n - matsize(binary(i-1))[2],i,0), binary(i-1))));

for (i=1,2^n, str = "";

for (j = 1,n, str = Str(str,tmp[i][j]));

tmp[i] = eval(Str(Str(a),str));

);

return (tmp);

}

Indexes conversion: to base 2 and from base 3.

intToBase2(n, vectorLength) = base3toInt(v) =

{ {

local(res = vector(vectorLength), local(i, res = 0);

j = vectorLength + 1, tmp = 1);

forstep(i = matsize(v)[2],1,-1, res *= 3;

while(j>1, res[j--] = if(bitand(n,tmp), 1, 0); res += v[i];

tmp <<= 1;););

return (res); return (res);

} }

Position of the ith rightmost 1 in vector v.

iThRightmostOnePos(v, i = 1) =

{

local(res = matsize(v)[2], position = i+1);

while(position--, while((res >= 1) && (v[res] != 1), res--;);

res--;

);

return(res);

}

Computation of vectors with n elements with exactly k 6 n entries equal to 1 and the others equal to 0 or 2.

vecSizeNwithK1(n,k) =

{

local(res, tmp1,tmp2, dim1, dim2, i, j = 0, h);

if (k == 0, res = matrix(2^n,n);

forvec(x=vector(n,i,[0,1]), res[j++,] = vector(n,h,2*x[h]));

, \\ else

if (n == k, res = matrix(1,n,i,j,1);

, \\ else

tmp1 = vecSizeNwithK1(n-1,k); \\ First element: 0

tmp2 = vecSizeNwithK1(n-1,k-1); \\ First element: 1

dim1 = matsize(tmp1)[1]; dim2 = matsize(tmp2)[1];

res = matrix(2*dim1 + dim2, n);

for(i=1,dim2, for(j=1,n-1, res[i,j] = tmp2[i,j]; res[i,n] = 1;););

for(i=1,dim1, for(j=1,n-1, res[i+dim2,j] = tmp1[i,j]; res[i+dim2,n] = 0;););

dim2 += dim1;

for(i=1,dim1, for(j=1,n-1, res[i+dim2,j] = tmp1[i,j]; res[i+dim2,n] = 2;););

));

return(res);

}

8 Iterative Karatsuba For Multivariate Polynomial Multiplication

Compute the vector ordn. Vertexes are not considered: they are treated apart in the multiplication function.

ordIndexes(n) =

{

local(res = matrix(3^n, n), i, j, k = 0, tmp);

for(i=1,n, tmp = vecSizeNwithK1(n,i);

for(j=1,matsize(tmp)[1], res[k++,] = tmp[j,];

));

return(res);

}

Data for Fd’s management.

initBlocks(n) =

{

local(res = vector(n,i,vector(2)), k);

res[1] = [1,n<<(n-1)];

for(k = 2, n, res[k] = [res[k-1][1] + res[k-1][2], binomial(n,k)<<(n-k)];);

return(res);

}

Subtract from faces their subfaces having 0 and 2 in correspondence with the posOneth entry whose value is
1 starting from the right end.

subFaces(v, indexes, base, limit, posOne) =

{

local(i, index, offset);

for(i = base, base + limit - 1, index = base3toInt(indexes[i,]) + 1;

offset = 3^(iThRightmostOnePos(indexes[i,], posOne));

v[index] -= (v[index-offset] + v[index+offset]););

return(v);

}

This is the complete function. The arguments a and b are two vectors with the coefficients of the two factors.

multivariateIterativeKaratsuba(a, b) =

{

local(n = ceil(log(matsize(a)[2])/log(2)), resA = vector(3^n), resB = vector(3^n),

res = vector(3^n), indexes = ordIndexes(n), i, sections = initBlocks(n));

\\\\\\\\\\\\\\\\\\\ Evaluation

\\ Vertexes first (no additions, just copies)...

for(i = 1, 2^n, index = base3toInt(intToBase2(i-1,n))<<1 + 1;

resA[index] = a[i]; resB[index] = b[i];);

\\ ...then all the rest.

for(i = 1, 3^n-2^n, index = base3toInt(indexes[i,]) + 1;

offset = 3^iThRightmostOnePos(indexes[i,],1);

resA[index] = resA[index-offset] + resA[index+offset];

resB[index] = resB[index-offset] + resB[index+offset];

);

\\\\\\\\\\\\\\\\\\\ Products : here with simple *, but they should be recursive.

for(i = 1, 3^n, res[i] = resA[i]*resB[i]);

\\\\\\\\\\\\\\\\\\\ Interpolation.

forstep(i = n, 1, -1, for(j = i, n,

res = subFaces(res, indexes, sections[j][1], sections[j][2], j-i+1);

));

return(res);

}

Here is an example code:

n = 3; a = coeffSquarePoly(n,"a"); b = coeffSquarePoly(n,"b");

print(multivariateIterativeKaratsuba(a,b));

